Method: T-test analysis to determine adequacy of sample set when fewer than $\mathbf{3 0}$ samples

Based on method in Statistics for Dummies, 2003.

Problem: 10 SPT blow counts takin in CH, some CL and MH, shallow depth, no GWT
SPT Blow Count Results
27 blows/ft
10 blows/ft
13 blows/ft
13 blows/ft
16 blows/ft
6 blows/ft 10 blows/ft
14 blows/ft
8 blows/ft
13 blows/ft
Average
13 blows/ft

Given that only 10 samples were taken, how do we know how close our computed sample average is to the true population average?

Solution: Apply t-test to compute a Confidence Interval.

Let's say we are shooting for a 95\% Confidence Interval of what an average strength by each method is.
So we have computed averages above, but since based on only 10 samples, in what range of values could the average be to be in the $95 \% \mathrm{Cl}$?
P. 206 of Statistics for Dummies, 2003:

1. Determine the confidence level and find the appropriate Z-value. (See Table 10-1 of text, p.180.) \% Confidence Z-Value
$Z \quad 196 \quad 80 \quad 1.28$

- $98-233$

2. Find the sample mean, sample std deviation, and sample size. 99

xbar	13
s	8
n	10
CoV	0.59

3. Multiply Z^{*} s and divide by square root of n to compute margin of error

Margin of Error 5
4. Take xbar plus or minus the Margin of Error to obtain the Confidence Interval.

However, when your sample size is small (less than 30), a modification is needed. (See Chapter 15.)
P. 238 of text:

1. Compute xbar, s, and n. Done above
2. Find xbar minus uo (uo being the true population average, which we don't know, so will assume).

The way this will work, just assume an average lower than the computed. We will then adjust it until we get it right at $95 \% \mathrm{Cl}$.
Assume uo $\quad 7.5$ blows/ft
xbar - uo $\quad 5.5$ blows/ft
3. Calculate standard error s divided by sqrt(n)

Standard Error 2
4. Divide Step 2 result by Step 3 SE.

Test statistic 2.28
This result is the test statistic.

However, since sample size is small, look up test statistic on the t-distibution and text in Chapter 14.
Per P. 220 on:
5. Make a null hypothesis Ho that the assumed population mean of 7.5 is correct.

Alternative hypothesis Ha is that population mean is not equal to Ho (as opposed to $<$ or $>$).
Again, we will use a 95% confidence interval to determine if null hypothesis is true or not.
6. Because degrees of freedom = sample size -1 :

DoF 9
7. Use Table 14-2 (p. 233).
2.28 falls on 97.5 th \% for 9 DoF.

This is lower-bound for 2 tails, as \% difference between 100 and 97.5 doubled is 5% corresponding to $95 \% \mathrm{Cl}$.
8. So correctly rounded, answer is: $\quad 8$ blows/ft

Table 8-1

Standard Score	Percentile
-3.4	0.03\%
-3.3	0.05\%
-3.2	0.07\%
-3.1	0.10\%
-3	0.13\%
-2.9	0.19\%
-2.8	0.26\%
-2.7	0.35\%
-2.6	0.47\%
-2.5	0.62\%
-2.4	0.82\%
-2.3	1.07\%
-2.2	1.39\%
-2.1	1.79\%
-2	2.27\%
-1.9	2.87\%
-1.8	3.59\%
-1.7	4.46\%
-1.6	5.48\%
-1.5	6.68\%
-1.4	8.08\%
-1.3	9.68\%
-1.2	11.51\%
-1.1	13.57\%
-1	15.87\%
-0.9	18.41\%
-0.8	21.19\%
-0.7	24.20\%
-0.6	27.42\%
-0.5	30.85\%
-0.4	34.46\%
-0.3	38.21\%
-0.2	42.07\%
-0.1	46.02\%
0	50.00\%
0.1	53.98\%
0.2	57.93\%
0.3	61.79\%
0.4	65.54\%
0.5	69.15\%
0.6	72.58\%
0.7	75.80\%
0.8	78.81\%
0.9	81.59\%
1	84.13\%
1.1	86.43\%
1.2	88.49\%
1.3	90.32\%
1.4	91.92\%
1.5	93.32\%
1.6	94.52\%
1.7	95.54\%
1.8	96.41\%
1.9	97.13\%
2	97.73\%
2.1	98.21\%
2.2	98.61\%
2.3	98.93\%
2.4	99.18\%
2.5	99.38\%
2.6	99.53\%
2.7	99.65\%
2.8	99.74\%
2.9	99.81\%
3	99.87\%
3.1	99.90\%
3.2	99.93\%
3.3	99.95\%
3.4	99.97\%

Table 14-2

DoF	90th \%ile				95th \%ile	97.5th \%ile
	1	3.078	6.314	12.706	31.821	99th \% ile
2	1.886	2.92	4.303	6.965	9.925	
3	1.638	2.353	3.182	4.541	5.841	
4	1.533	2.132	2.776	3.747	4.604	
5	1.476	2.015	2.571	3.365	4.032	
6	1.44	1.943	2.447	3.143	3.707	
7	1.415	1.895	2.365	2.998	3.499	
8	1.397	1.86	2.306	2.896	3.355	
9	1.383	1.833	2.262	2.821	3.25	
10	1.372	1.812	2.228	2.764	3.169	
11	1.363	1.796	2.201	2.718	3.106	
12	1.356	1.782	2.179	2.681	3.055	
13	1.35	1.771	2.16	2.65	3.012	
14	1.345	1.761	2.145	2.624	2.977	
15	1.341	1.753	2.131	2.602	2.947	
16	1.337	1.746	2.12	2.583	2.921	
17	1.333	1.74	2.11	2.567	2.898	
18	1.33	1.734	2.101	2.552	2.878	
19	1.328	1.729	2.093	2.539	2.861	
20	1.325	1.725	2.086	2.528	2.845	
21	1.323	1.721	2.08	2.518	2.831	
22	1.321	1.717	2.074	2.508	2.819	
23	1.319	1.714	2.069	2.5	2.807	
24	1.318	1.711	2.064	2.492	2.797	
25	1.316	1.708	2.06	2.485	2.787	
26	1.315	1.706	2.056	2.479	2.779	
27	1.314	1.703	2.052	2.473	2.771	
28	1.313	1.701	2.048	2.467	2.763	
29	1.311	1.699	2.045	2.462	2.756	
30	1.31	1.697	2.042	2.457	2.75	
40	1.303	1.684	2.021	2.423	2.704	
60	1.296	1.671	2	2.39	2.66	
Z-values	1.282	1.645	1.96	2.326	2.576	

Method: Obtaining Confidence Interval Neglecting Small Sample Size
Based on method in Statistics for Dummies, 2003.

Problem: 10 SPT blow counts takin in CH, some CL and MH, shallow depth, no GWT
SPT Blow Count Results
27 blows/ft
10 blows/ft
13 blows/ft
13 blows/ft
16 blows/ft
6 blows/ft
10 blows/ft
14 blows/ft
8 blows/ft
13 blows/ft
Average
16 blows/ft
Solution: Find confidence interval neglecting small sample size.
Let's say we are shooting for a 95\% Confidence Interval of what an average strength by each method is.
So we have computed averages above, but since based on only 10 samples, in what range of values could the average be to be in the $95 \% \mathrm{Cl}$?
P. 206 of Statistics for Dummies, 2003:

1. Determine the confidence level and find the appropriate Z-value. (See Table 10-1 of text, p.180.)

xbar	16
s	8
n	10
CoV	0.48

3. Multiply $Z^{*} s$ and divide by square root of n to compute margin of error.
Margin of Error 5
4. Take xbar plus or minus the Margin of Error to obtain the Confidence Interval.

CI 11 to 20
5. Use lower bound and round to correct significant figures.

Cl-lower bound 10 blows/ft
9 blows/ft

Method: ASTM E122 Methodology

Problem: 10 SPT blow counts takin in CH, some CL and MH, shallow depth, no GWT
SPT Blow Count Results
27 blows/ft
10 blows/ft
13 blows/ft
13 blows/ft
16 blows/ft
6 blows/ft
10 blows/ft
14 blows/ft
8 blows/ft
13 blows/ft
13 blows/ft
6 blows/ft

Method: 2 Standard Deviations from Mean captures 95\% of all possibilities based on Empirical Rule

First, check to be sure there was no mistake made in collecting the extreme data (27 on the high end, 6 and 8 on the low end). One method to use is Chauvenet's Criterion:

1. Calculate difference between sample mean and suspect data, and how many standard deviations that quantity is.

Data point \# StDevs from Mean

27	2.4
6	1.2
8	0.9

2. Use a Normal Error Integral Table (published tables as in Taylor 1982) to look up the probability that a measurement will differ from the mean by the computed number of standard deviations.

Data point	\# StDevs from Mean	Probability Outside Computed \# StDevs from Mean
27	2.4	0.016
6	1.2	0.23
8	0.9	0.368

3. Since we took 10 measurements, multiply probabilities by 10 . If result is less than $1 / 2$, consider rejecting the measurement.

Data point		\# SDs Off	Probability	x10
27	2.4	0.016	Decision	
6	1.2	0.23	2.3 Accept	
8	0.9	0.368	3.68 Accept	

4. If the data point of 27 is rejected, the sample mean and standard deviation should be recalculated based on the remaining 9 measurements.
